Y1 Personalised Learning Journey Date: WB:		
NC Objective: Multiplication and division		
Resources/documents: Ready to Progress Guidance, White Rose Small steps, White Rose Calculation Policies (Use of concrete), NCETM mastery assessment docs.		
Pre- assessment	Assessment tasks	Language Focus
Teaching sequence	Learning tasks	Language Focus
1. WALT: Count in 2 s	WILF: I can count in 2 s from 0 to 50. Use bead string to model -2 beads at a time counting from 0 to 50. Numicon to model and count Evidence: Real life: How many socks / gloves in total? 50 grid, colour in multiples of 2 Missing number tracks - fill in missing numbers Apply: So many bags of sweets, some with 2 in a pack and some with 1 in a pack. Person $1-15$ bags of 1 Person $2-9$ bags of 2 "Person 1 says they have more sweets because they have more bags. Are they right? Explain answer" Apply 2: X is counting in 2 s . She says: $22,24,26,28 \ldots$ Will she say the number 33 ? Prove your answer	Count Count on Higher Forwards Twos Multiples Pattern Tens Ones Even Odd
2. WALT: count in 5 s	WILF: I can count in 5s from 0 to 60. Bead strings / numicon to model EVIDENCE: Groups of 5 things - how many in total? 60 grid, colour in multiples of 5 and find the pattern. Ordering numbers Missing number tracks- fill in missing numbers Lowers: concrete + pictures Apply Piggy banks with 5 ps inside (20p, 40p, 45p, 50p) - which is the odd one out? - explain answer GD: I'm thinking of a number: You count it in 2 s and 5 s . It has less than 4 tens. What could it be?	Count Count on Higher Value Forwards Multiples Pattern Fives Tens Ones Even Odd
3.	WILF: I can count in 10s from 0 to 100	Value Tens

WALT: Count in 10s	Tens counters and bead strings to model. EVIDENCE: Groups of 10 things - how many in total? 100 square, colour in multiples of 10 and find the pattern. Ordering numbers Missing number tracks- fill in missing numbers Apply In a shop, grapes come in bunches of 10 Max wants to buy forty grapes. Are there enough grapes? Apply 2 Always, sometimes, never? When I count in 10s from 0 , the ones change.	Ones Count Count on Value Multiples Odd Even
4. WALT: Make equal groups	1. Concrete WILF: I use objects to make groups with equal amounts. Share objects (pencils etc.) between groups of chn - explore equal groups and unequal groups. Chn to work in mixed ability pairs (talk partners) - give amounts of objects and ask to put into given equal groups. Challenge: give amount, can they find an amount equal groups to put the amount into? Oracy: \qquad altogether. \qquad equal groups of \qquad . EVIDENCE: photos Apply True or false: " 2 children can equally share 13 sweets." GD How many children could share 30 sweets? Multiple possible answers - share objects (30 (1 each), 15 (2 each), 6 (5 each), 10 (3 each)) 2. Pictorial WILF: I can use pictures and drawings to make equal groups. Draw groups and share by drawing into each one - count as you share. EVIDENCE: challenge cards - given amount and groups to draw into. Complete the equal groups by adding drawings Apply 1	Share Equal Unequal Altogether Groups Full sentence Amount

	Apply 2 Roll a dice - can you make that number of equal groups with 18? GD Circle the box of chocolates that 2 people could share equally (more than one possible answer) Circle the box of chocolates that either 2 or 5 people could share equally (more than one possible answer)	
5. WALT: Add equal groups	1. Pictorial WILF: I can find the total within an amount of groups by adding each one together. Count in the multiple to find the total. e.g. 4 bikes and find the total amount of wheels. $2+2+2+2$ Count in 2 s 4 times to find the answer $=8$ EVIDENCE: challenge cards - pics of groups, number sentences beneath. Draw the groups to correspond to the number sentence. Apply Spot the mistake - pic of groups, number sentence with more than the correct amount of groups and incorrect answer. GD George and Tilly have both made different equal groups of sweets. They both have 20 sweets altogether. What groups could they each have made?	Groups Total Amount Multiple Altogether Each group Add Equal
6. WALT: make arrays	1. Concrete WILF: I can use objects to make and understand arrays Pictures to embed column / boat. - Columns hold UP the building. Row ACROSS the lake. Cones on the playground in 3 / 4 groups depending on adults draw around rows / columns to find groups of rows / columns. Counters to make different arrays, write number sentences. EVIDENCE: photos, 2. Pictorial Pic of arrays - \qquad rows of \qquad \qquad columns of \qquad Draw arrays to match the sentences and matching number sentences.	Column Row Amount Altogether Add Groups Across Up Array

	Apply GD	
7. WALT: Make doubles.	1. Concrete WILF: I can use concrete objects to double amounts up to 20 Carousel of activities: Twenties frames - 2 colours Paper chains Numicon Finger painting Number and word sentences in each (\qquad $+$ \qquad $=$ \qquad , double \qquad is _) \qquad EVIDENCE: photos / finger paintings 2. Pictorial WILF: I can use pictures and drawings to double amounts up to 20. EVIDENCE: Drawings doubles - 1 colour + another colour drawn straight into books. No sentences and word sentence. CHALLENGE: ' x ' symbol (3×2 example) Apply 3. Abstract WILF: I can double amounts by counting in 2 s EVIDENCE: 0-9 dice, roll and double straight into books. Addition no. sentence, word no. sentence + ' x ' no. sentence for challenge. Apply	Double Equal Multiple Even Two Amount Altogether Two times

NC Objective:

- Count in multiples of twos, fives and tens.
- Solve one step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Resources/documents: Ready to Progress Guidance, White Rose Small steps, White Rose Calculation Policies (Use of concrete), NCETM mastery assessment docs, Primary Stars Maths Tens frames, counters, base 10, whole-part model, bar model, number cards
Real life discussion before teaching: Where do we use calculations in real life? Why do we need it? Why is it important? Collect examples for WW.

Pre- assessment	Assessment tasks	Language Focus
Revision from previous year (Y1)	Counting in steps of 2,5,10	Numbers 1-50, multiplication, count, steps, $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$
Teaching sequence	Learning tasks	Language Focus
1 : WALT: Make equal groups	Children will use stories, pictures and concrete manipulatives to explore making equal groups and write statements. Tt is important that children know which groups are equal and which are unequal. Ask questions such as: How do I know if the groups are equal / unequal? Complete the sentences to describe the equal groups. Are the groups equal / unequal? How can we make these groups equal?	Numbers 1-50, multiplication, multiply, multiplied by, multiple, division, dividing, grouping, sharing, array, number patterns, groups, lots of, groups of, total, rows, columns, repeated addition.
2. WALT: Add equal groups	Children use their knowledge of equal groups to find totals. They focus on counting equal groups of 2, 5 and 10 and explore this within 50. Children begin by linking this to real life contexts and use the pictorial representations to help them. They begin by identifying the repeated addition sum that matches the pictorial representation. Ask questions such as: How many groups? How many in each group? How many in total?	Numbers 1-50, multiplication, multiply, multiplied by, multiple, division, dividing, grouping, sharing, array, number patterns, groups, lots of, groups of, total, rows, columns, repeated addition.
3. WALT: Add equal groups	As children are now familiar with adding equal groups, children will progress to representing equal groups in various ways such as pictorially, repeated addition, sentences, and bar models. Children will be encouraged to use number lines to check their answers. Ask questions such as: How many groups? How many in each group? How many in total? Can you represent this using a bar model? Can you use a number line to check your answer?	Numbers 1-50, multiplication, multiply, multiplied by, multiple, division, dividing, grouping, sharing, array, number patterns, groups, lots of, groups of, total, rows, columns, repeated addition.

4 WALT: Make arrays	Children will be introduced to arrays. They will use their knowledge from equal groups to build arrays from the equal groups presented. It is important that children understand the difference between columns and rows. For example, an array with 2 rows and 3 columns will look different to an array that has 3 rows and 2 columns but will both give a total of 6 . children will use concrete apparatus to work practically building arrays using pictorial representations of equal groups then use repeated addition to help them find the total. Ask questions such as: What do we mean by row / column? Can you build an array using the equal groups shown? How many rows / columns? Can you write a number sentence to represent the array?	Numbers 1-50, multiplication, multiply, multiplied by, multiple, division, dividing, grouping, sharing, array, number patterns, groups, lots of, groups of, total, rows, columns, repeated addition.
5. WALT: Make arrays	Children should now be able to confidently build arrays and describe them commenting on the number of rows and how many in each row. In this lesson, children will use pictorial representations to describe arrays. They will also be able to build and draw an array based on its description. Ask questions such as: Can you build an array using the equal groups shown? How many rows / columns? Can you write a number sentence to represent the array? What is different between the two arrays? Can you draw an array from the description shown?	Numbers 1-50, multiplication, multiply, multiplied by, multiple, division, dividing, grouping, sharing, array, number patterns, groups, lots of, groups of, total, rows, columns, repeated addition.
6. WALT: Recognise equal groups	Children will describe equal groups using stem sentences to support them. It is important that children know what groups are equal and which are unequal. The addition or multiplication symbol is not used within this small step but the language will support them in understanding repeated addition and multiplication. In Year 2, children will work with $2 x, 3 x, 5 x$ and $10 x$ multiplication tables. Ask questions such as: What does the 2 represent? What does the 3 represent? What does the 5 represent? What does the 2 represent? I have X equal groups, with Y in each group. Which image am I describing?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
7. WALT: Make equal groups	Children should be able to make equal groups to demonstrate their understanding of the new language. It is important that children are exposed to numerals and words, as well as multiple representations. Children should be able to verbally explain and write what particular groups show. Ask questions such as: How else could you represent these in equal	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication

	groups? How many ways can you represent this? How have you grouped your items?	table, multiplication fact, division fact
8. WALT: Add equal groups	Children will start relating equal groups to repeated addition. At this point children would have added 3 single digits together, therefore they should be able to add any 3 numbers together. However, if there are more than 3 equal groups, they must be limited to $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$ and 3 s . Ask questions such as: What do the two 3s represent? Why are we using the addition symbol? How else can we show the equal groups? What is the total?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
9. WALT: write multiplication sentences using the X symbol	Children are introduced to the multiplication symbol for the first time. They should link the stem sentences, repeated addition and multiplication together. Children should also be able to interpret mathematical stories and create their own. The use of concrete resources and pictorial representations is still vital for understanding. Ask questions such as: What does the 3 represent? What does the 6 represent? What does lots of mean? Does $18=$ 3×6 mean the same? How is $7+7+7$ the same as 3×7 ?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
10. WALT: write multiplication sentences from pictures	Children will use the multiplication symbol and work out the total from given pictures. They should also be able to interpret a word problem by drawing images to help them solve it. Coins could also be used within this small step. Ask questions such as: What does the 4 represent? What does the 3 represent? What does the 12 represent? Can you think of your own story for_ x_{-}?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
11. WALT: Use arrays	Children will explore arrays to see the commutativity between multiplication facts e.g. $5 \times 2=2 \times 5$. The use of the arrays will help children calculate multiplication statements. The symbol and language of 'lots of' should be used interchangeably. Ask questions such as: Where are the 2 lots of 3 ? Where are the 3 lots of 2? What do you notice? What can we use to represent the \qquad ? Can you draw an image to show this?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
12. WALT: Make doubles	Children will recap double numbers up to 20 . They will understand that doubling is 2 groups of the same amount / number. Children will work practically and use pictorial representations to represent doubling then progress to describing doubles using stem sentences and represent this in the abstract	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array,

	using repeated addition. Ask questions such as: Does this picture represent doubles? Double_is_. $\ldots_{+}^{+}=\ldots$ How can we represent this double?	row, column, number patterns, multiplication table, multiplication fact, division fact
13. WALT: Use pictorial strategies to count in twos	Images will be used to encourage children to count in twos. In addition to this, number tracks will be used. Manipulatives such as cubes and Numicon are important for children to explore equal groups within the 2 times table. Ask questions such as: If $12 p$ is made using $2 p$ coins, how many coins would there be? How many 2 s go into 12 ? How can the images of \qquad help you to solve the problems?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
14. WALT: count in 5s	Children should see the =sign at both ends of the calculation to understand what it means. Ask questions such as: If there are 5 pens in each pot and 30 pens, how many pots? Can you count in 5 s to \qquad How many 5 s go into \qquad ? What does each symbol mean? Do we need to calculate?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
$\begin{aligned} & 15 \\ & \text { WALT: count in 10s } \end{aligned}$	Children will count in 10 s from any given number. This small step is focused on the 10 times table and it is important to include the use of zero. Children should see the $=$ sign at both ends of the calculation to understand what it means. Hundred number squares can be used allowing children to see a pattern. Ask questions such as: If there were \qquad altogether, how many \qquad ? How do you know? How many tens go into \qquad ? Can you count in 10s to \qquad ? What does greater than mean? What does less than mean?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
16. WALT: Make equal groups sharing	Children will divide by sharing to make equal groups using one to one correspondence. They will start by doing this in practical contexts. Ask questions such as: How many do you have to begin with? How many equal groups are you sharing between? How many are in each group? How do you know that you have shared the objects equally? \qquad has been shared equally in to \qquad equal groups. \qquad groups of \qquad make	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact

17. WALT: Make equal groups sharing	Children will be introduced to the \div symbol. They will begin to see the link between division and multiplication. Ask questions such as: How many in each group? How many groups? How do you know that you have shared the objects equally? What division calculation can we write to show this? What multiplication can we write to show this?	$\begin{aligned} & 2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 3 \mathrm{~s} \text {, numeral, how } \\ & \text { many, multiplication, } \\ & \text { multiply, multiplied by, } \\ & \text { multiple, groups of, lots of, } \\ & \text { times, } \\ & \text { repeated addition, equals, } \\ & \text { altogether, sum, total, array, } \\ & \text { row, column, number } \\ & \text { patterns, multiplication } \\ & \text { table, multiplication fact, } \\ & \text { division fact } \end{aligned}$
18. WALT: Make equal groups - grouping	Children divide by grouping objects into a given amount. They then count on to find the total number of groups. They will start by doing this in practical contexts. Ask questions such as: How many do you have to begin with? How many are in each group? How many groups do you have? There are \qquad groups of \qquad which make \qquad	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
19. WALT: Make equal groups - grouping	As children will now be confident dividing by sharing practically, they will move onto doing this pictorially including the use of number lines. They will recognise the link between division, multiplication and repeated addition when representing their groups. Ask questions such as: How many do you have to begin with? How many are in each group? How many groups do you have? How long should your number line be? What will you count up in?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
20. WALT: Divide by 2	As children will now be secure with sharing and grouping they will use this knowledge to help them divide by 2 . They will be secure with representing division as an abstract number sentence using the division and equals symbol. Children should be able to count in 2 s and know their 2 x table. Ask questions such as: What do you notice when you group these objects into twos? Is there a link between dividing by 2 and halving? What is different about sharing into two groups and grouping in twos?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
21. WALT: recognise odd and even numbers	Building on from Year 1, children should at this stage be able to recognise odd and even numbers. They will use concrete manipulatives to understand odd and even numbers and the structure of these. Ask questions such as:	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array,

	Can you sort these objects (number pieces, ten frames, cubes, pictures etc) into odd and even? What makes these odd/even? Which of these numbers can you share equally between 2? How do you find out if X is an odd or even number?	row, column, number patterns, multiplication table, multiplication fact, division fact
22. WALT: Divide by 5	Children focus on efficient strategies. They use their knowledge of the five times table to help them divide by 5 . They will start by using practical methods involving cubes to help divide by 5. Ask questions such as: How can we show the problem using objects/images? How does knowing your 5 times table help when dividing by 5? How many towers of 5 could you make from - - towers of 5 is the same as \qquad \qquad is the same as \qquad towers of 5 . towers of cubes make	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
23. WALT: Divide by 5	Building on from the previous step, children will have greater confidence dividing by 5 and will use calculations to represent this including using the ' $=$ ' sign at both ends of the calculation. Ask questions such as: How can we show the problem using objects/images? How does knowing your 5 times table help when dividing by 5? Circle all the multiples of 5 on a 100 square. What do you notice about the numbers? Can you explain the pattern? How does this help you to divide these numbers? When would we count in $5 s$?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
24. WALT: Divide by 10	Children will need to be able to multiply by 10 and recognise multiples of 10 . They will need to use both grouping and sharing to divide by 10. Children start to see that grouping and counting in 10 s is more efficient than sharing into 10 equal groups. They will start by using practical methods to help divide by 10. Ask questions such as: What can we use to represent __? How does knowing your 10 times table help you to divide by 10? How many 10s in ___?	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
25. WALT: Divide by 10	Building on from the previous step, children will have greater confidence dividing by 10 and will use calculations to represent this including using the ' $=$ ' sign at both ends of the calculation. Ask questions such as: How many groups of 10 are there in \qquad tens? What bar model would represent this	$2 s, 5 s, 10 s, 3 s$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number

	problem? How many 10s make \qquad ? \qquad make \qquad tens.	patterns, multiplication table, multiplication fact, division fact
26. WALT: Solve problems	Worded problems of increasing difficulty related to topic of plants/flowers/The Secret Garden Teach how to solve worded problems by modelling using pictures to work out answers. Talk to children about the key information and underline it on the question. Model in different ways - using base 10, place value counters, part whole model, bar model... Encourage children to take responsibility for their own learning by using the resources they need and drawing pictures, models to help them.	$2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 3 \mathrm{~s}$, numeral, how many, multiplication, multiply, multiplied by, multiple, groups of, lots of, times, repeated addition, equals, altogether, sum, total, array, row, column, number patterns, multiplication table, multiplication fact, division fact
Assessment	Ideas: Quiz Mini test Challenge lesson Children independently use resources if they need to. These should be available for children to access independently. Any misconceptions and gaps must be picked up at this point and intervention given.	

Y3 Personalised Learning Journey Multiplication and Division

- NC Objective:
- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division

Resources/documents: White Rose Small steps, White Rose Calculation Policies (Use of concrete), NCETM

 mastery assessment docs, Garry Hall.org.ukReal life discussion before teaching: Set in context of real life - calculating amounts, arrays etc

Pre- assessment
Teaching sequence
WALT: Count in groups of 3
Day 1: WILF: I can use
concrete resources to
make groups of 3.
Day 2: WILF: I can make

arrays and write a calculation to match it.

Show: Show that when we change to 3×1 (draw itas an array) it is the same answer.

Ask children to draw arrays on their whiteboards to represent 2×3 and 3×2.

Ask children to draw the rest of the $3 \times$ table using arrays and then consolidate learning using mathematical language and counting the groups of arrays in threes. Ensure they know how to write the calculation to match each array

Have some arrays ready on IWB. Show them and quickly they write they answer on their whiteboards.

Practise in books: Give some arrays and they write the calculation to match it and then give the calculation and they write the array.

Apply: Odd one out/spot the mistake: give some arrays that are in the three times table and some with unequal groups.

GD: Worded harder problems- use of NCETM assessment doc.

	Show a worded problem and ask children to draw images to work There are 8 children. Each child has 3 sweets. out the problem: Give similar How many sweets altogether? problems for apply task Use concrete or pictorial representations to show this problem. (independent) Write another repeated addition and multiplication problem and ask a friend to represent it. EG GD - If $5 \times 3=15$, which number sentences would find the answer to 6×3 ? - $5 \times 3+6$ - $5 \times 3+3$ - $15+3$ - $15+6$ - 3×6 Explain how you know.	
WALT: Multiply by three WILF: I can solve calculations by counting in threes.	Use a number sqaure (100) and ask children to count in threes -colour in every third number. Write down the three times table EG $1 \times 3=, 2 \times 3=$ Introduce the vocabulary - multiple-the answer to a times table question is called a multiple Ask children to complete the rest of the table calculting the answers (multiples of 3). Show some missing numbers calculations using the $3 x$ table: $3 x ?=30$ Ensure they understand that the multiplication can be written either way and it is still the same answer (link back/model using arrays if needed). Independent tasks: Practise Solve calculations in any order: EG: $2 \times 3=$ $3 \times 5=$ $7 \times 3=$ $1 \times 3=$ Further practise: Fill in the missing number facts. Apply: Various worded problems EG:	Times Multiply Lots of Groups of Equal groups of Multiply

	Solve this problem. Circle the numbers that are not multiples of 3. If one triangle has three vertices, how many vertices would 11 triangles have in total? 60 11 21 GD Start this rhythm: Clap, clap, click, clap, clap, click. Carry on the rhythm, what will you do on the 15th beat? How do you know? What will you be doing on the 20th beat? Explain your answer.	
WALT: Count in groups of 4 Day 1: WILF: I can use concrete resources to	Day 1: Use a variety of resources (EG: counters, bead strings) to make groups of four. Practise counting these in threes verbally. Use these to ask questions and use the language of multiplication: EG lots of, times by, multiply by, groups of)	Times Multiply Lots of Groups of Equal groups of
Day 2: WILF: I can make arrays and write a calculation to match it.	Day 2: Demonstrate making an array by starting with 1×4 Show that when we change to 4×1 (draw itas an array) it is the same answer. Ask children to draw arrays on their whiteboards to represent 2×4 and 4×2. Ask children to draw the rest of the $4 x$ table using arrays and then consolidate learning using mathematical language and counting the groups of arrays in fours. Ensure they know how to write the calculation to match each array Have some arrays ready on IWB. Show them and quickly they write they answer on their whiteboards. Practise in books: Give some arrays and they write the calculation to match it and then give the calculation and they write the array. Apply: Odd one out/spot the mistake: give some arrays that are in the three times table and some with unequal groups. GD: Worded harder problems- use of NCETM assessment doc.	

WALT: Count in multiples of four WILF: I can solve calculations and problems using pictorial representations.	Show some pictorial representations of counting in fours on whiteboardMake sure children are counting in groups of four. Practise (EG) Apply: GD Explain your answer.	Times Multiply Lots of Groups of Equal groups of
WALT: Multiply by four WILF: I can solve calculations by counting in fours.	Use a number sqaure (100) and ask children to count in fours -colour in every fourth number. Write down the three times table EG $1 \times 4=, 2 \times 4=$ Introduce the vocabulary - multiple-the answer to a times table question is called a multiple	Times Multiply Lots of Groups of Equal groups of Multiply

Ask children to complete the rest of the table calculting the answers (multiples of 4)

Show some missing numbers calculations using the $4 x$ table: $4 \times$? $=40$

Ensure they understand that the multiplication can be written either way and it is still the same answer (link back/model using arrays if needed).

Independent tasks:

Practise

Solve calculations in any order:
EG: $2 \times 4=$
$4 \times 5=$
$7 \times 4=$
$1 \times 4=$

Further practise:

- Complete the number sentences.

> $1 \times 4=$	> $9 \times 4=$
> $2 \times-$	> $32=\ldots \times 4$
$\underline{-}=5 \times 4$	$\ldots 4=48$

- 8 children go to the cinema

One ticket costs $£ 4$
How much does it cost altogether?

Apply: Various worded problems EG:

WALT: Count in groups of 8 Day 1: WILF: I can use concrete resources to make groups of 8 . Day 2: WILF: I can make arrays and write a calculation to match it.	Day 1: Use a variety of resources (EG: counters, bead strings) to make groups of eight. Practise counting these in eights verbally. Use these to ask questions and use the language of multiplication: EG lots of, times by, multiply by, groups of) Day 2: Demonstrate making an array by starting with 1×8 Show that when we change to 8×1 (draw itas an array) it is the same answer. Ask children to draw arrays on their whiteboards to represent 2×8 and 8×2. Ask children to draw the rest of the $3 x$ table using arrays and then consolidate learning using mathematical language and counting the groups of arrays in eights. Ensure they know how to write the calculation to match each array Have some arrays ready on IWB. Show them and quickly they write they answer on their whiteboards. Practise in books: Give some arrays and they write the calculation to match it and then give the calculation and they write the array. Apply: Odd one out/spot the mistake: give some arrays that are in the three times table and some with unequal groups. GD: Worded harder problems- use of NCETM assessment doc.	Times Multiply Lots of Groups of Equal groups of
WALT: Count in multiples of eight WILF: I can solve calculations and problems using pictorial representations.	Show some pictorial representations of counting in eights on whiteboardMake sure children are counting in groups of eight. Practise (EG)	Times Multiply Lots of Groups of Equal groups of

	- Complete the sentences to describe each picture. There are__bags of pears. There are__ pears in each bog. There are _ pears in total. What is the same about your answers? What is different? Complete the sentences. How many legs do 5 spiders have altogether? There are \qquad legs on each spider. \qquad + - + \qquad $+$ -+ \qquad \qquad \qquad $\times 8=$ \qquad spiders have ___ legs altogether. Apply: GD	
WALT: Multiply by eight WILF: I can solve calculations by counting in eights.	Use a number sqaure (100) and ask children to count in eights -colour in every eighth number. Write down the three times table EG $1 \times 8=, 2 \times 8=$ Introduce the vocabulary - multiple-the answer to a times table question is called a multiple Ask children to complete the rest of the table calculting the answers (multiples of 8). Show some missing numbers calculations using the $8 x$ table: $8 \times ?=40$ Ensure they understand that the multiplication can be written either way and it is still the same answer (link back/model using arrays if needed).	Times Multiply Lots of Groups of Equal groups of Multiply

	Some packs have 4 cans in them, and some packs have 8 cans in them. Rosie has 64 cans. How many packs of 4 cans and how many packs of 8 cans could there be?	
WALT: Solve word problems involving the 3,4 and $8 \times$ tables WILF: I can use my times tables to solve problems.	Write a range of mixed calculations on the board for the 3, 4 and $8 \times$ table. Put a topic/real life related word problem on the board EG: On 3 days, the Iron Man walked 8 miles per day. Show the graphic organiser: How I can be successful with word problems: Tell children that we can use these steps to be successful when solving problems: Go through the steps using the word problem as a modeldraw on large paper to show how you would solve it by following each step carefully. Now put another word problem on the board. Ask children to follow the steps and work in pairs on big paper with colured pens. Go through the answer and children self check. Give other word problems for children's independent tasks: Work up from easy to harder questions by putting in more or less steps or more complex vocabulary.	
Assessment of knowledge at this point.	Intervention where needed.	
WALT: Multiply 2 digits by 1 digit WILF: I can use base 10 to multiply 2×1 digit numbers.	Write the multiplication 21×3 on the board as a number sentence. Ask children to say what it means using various vocabulary. Now write it in a column. Tell them that it means the same thing $21 \times 3=$	Groups of Lots of 2 digit 1 digit Multiply Multiplied by

	Model how to use base 10 to solve the question by partitioning the tens and ones into groups of 3 (see image) alongside the column multiplication. Model how to add the ones and write it in the column correctly then the tens. Give some more and children use base 10 to solve in pairs.	
WALT: Multiply 2 digits by 1 digit WILF: I can solve calculations using pictorial images	Repeat last step to consolidate prior learning. Move onto using pictorial images to calculate but still have Base 10 /place value counters if children need them. Practise Annie uses place value counters to work out 34×2 Apply: Complete the calculation below. 1a. Rehan and Destiny have solved the following multiplications. Are they both correct? Explain how you know. GD Dexter says, $4 \times 21=2 \times 42$ Is Dexter correct?	multiply, group, sets of, digits
WALT: Multiply 2 digits by 1 digit	Practical into formal written method Show a calculation EG 23×4 Using base 10 as in previous lessons, model again how to use the base 10 alongside the column method and verbally talk through the process in small steps making sure children know to calculate the ones first then the tens and writing in the correct place in the	multiply, group, sets of, digits, formal method

	column. Ensure that the children are using their multiples and not just counting each one. Give some more to do in pairs on whiteboards just by writing the column calculation on the board-can they solve independently or by using the base 10 independently and writing in the column correctly? Ask children if they can calculate without using base 10 and model how to do this. Practise: 2×1 digit column calculations to solve. Apply: And/or worded problems GD How close can you get to 100 ? Use each digit card once in the multiplication. 234	
WALT: Solve word problems involving 2×1 digit numbers WILF: I can use column multiplication to solve problems.	Put a topic/real life related word problem on the board EG: On 23 children all ate 3 sweets each. How many did they eat in total Show the graphic organiser: How I can be successful with word problems: Tell children that we can use these steps to be successful when solving problems:	Column method Multiplied by Groups of Lots of Word problems

	Go through the steps using the word problem as a model- draw on large paper to show how you would solve it by following each step carefully and showing that they need to calculate using column multiplication.	Now put another word problem on the board. Ask children to follow the steps and work in pairs on big paper with colured pens. Go through the answer and children self check. Give other word problems for children's independent tasks: Work up from easy to harder questions by putting in more or less steps or more complex vocabulary.
Assessment and intervention	(

NC Objectives:

Year 3

- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.
Year 4
- recall multiplication and division facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together 3 numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.
Resources/documents: Ready to Progress Guidance, White Rose Small steps, White Rose Calculation, deepening understanding resources Policies (Use of concrete), NCETM mastery assessment docs, past SATs questions. Deepening Understanding TTRS Prodigy Maths Classroom secrets

Numicon, Hundred squares, Multiplication cards, timetable fact cards, multiplication games, Base 10. Place value counters. Unifex (SEN),, beads and other objects, counters to create arrays.

Real life discussion before/during teaching : Where do we use Place Value in real life:

EG: pizza cakes

Pre- assessment	Assessment tasks								Language Focus
Revision from previous years: Puma assessments	White Rose assessments								
Teaching sequence	Learning tasks								Language Focus
Multiples of 3	This small step revisits learning from Year 3 around multiplying by 3 and the 3 times-table. Children explore the link between counting in $3 s$ and the 3 times-table to understand multiples of 3 in a range of contexts. They use familiar representations such as number tracks and hundred squares to represent multiples of 3 . They explore how to recognise if a number is a multiple of 3 by finding its digit sum: if the sum of the digits of a number is a multiple of 3 , then the number itself is also a multiple of 3 This small step includes multiples of 3 up to 3×12 and will be useful support for learning multiples of 6 and 9 in future steps.								- Multiple - Lots of... - Arrays

	times-table facts, rather than using facts they know to find the facts they do not know.	
7 times table and division facts.	In this small step, children bring together their knowledge of multiplying and dividing by 7 in order to become more fluent in the 7 times-table. Children construct fact families and use concrete and pictorial representations to make links between multiplication and division. It is important that children understand the structure of the multiplication table and can derive unknown facts from known facts. Children explore links between multiplication tables, investigating how this can help with mental strategies for calculation, such as $9 \times 7=9 \times 5+9 \times 2$. This step could also be an opportunity to use the 6 and 8 times-tables to derive the 7 times-table, for example $9 \times 7=9 \times 8-9$ or $9 \times 7=9 \times 6+9$. Drawing arrays is a useful way of helping children to see these links. Misconceptions: - Children may need support to use the multiplication facts that they are confident in to find the ones that they do not know as well. - Children may find all multiplication facts by starting from 1×7 and then reciting their times-table facts, rather than using facts they know to find the facts they do not know	
11 times table and division facts.	In this small step, children build on their knowledge of the 1 and 10 times-tables to explore the 11 timestable. They recognise that they can partition 11 into 10 and 1 and use known facts to support their understanding, for example $7 \times 11=7 \times 10+7 \times 1=$ 77 They use a range of concrete and pictorial representations to deepen their understanding of multiplying by 11 and to make links between multiplying and dividing by 11 . They explore dividing by 11 through sharing into 11 equal groups and grouping into 11s. At this stage, children should already know the majority of facts from other timestables, so highlighting the importance of commutativity is key in this step Misconceptions: - Children may need support to use the multiplication facts that they are confident in to find the ones that they do not know as well. - Children may not realise that $110,121,132$ and so on are multiples of 11 , as the previous multiples of 11 all have repeated digits, for example 66, 77, 88	
12 times table and division facts.	In this small step, children build on their knowledge of the 2 and 10 times-tables to explore the 12 timestable. They recognise that they can partition 12 into 10 and 2 and use known facts to support their	

	understanding, for example $7 \times 12=7 \times 10+7 \times 2=$ 84. They also build on their knowledge of the 6 times-table, recognising that multiplying by 12 is the same as multiplying by 6 and then doubling. Children use a range of concrete and pictorial representations to deepen their understanding of multiplying by 12 and to make links between multiplying and dividing by 12 . They explore dividing by 12 through sharing into 12 equal groups and grouping into 12s. At this stage, children should already know multiplication facts from other times-tables, so highlighting the importance of commutativity is key in this step. Misconceptions: - Children may need support to use known multiplication facts to find new ones. - Children may find all multiplication facts by starting from 1×12 and then reciting their times-table facts, rather than using facts that they know.
Multiply by 1 and 0.	In this small step, children explore the effect of multiplying by 1 . They notice that when they multiply a number by 1 , the result will always be the number itself. This small step also focuses on multiplying by zero. Children learn that when multiplying any number by zero the result is always zero. A common misconception with this small step is that children confuse the result of multiplying by zero with multiplying by 1 . Ensure pictorial representations are used to address this misconception, so that children can see that 4×0 is the same as 4 lots of zero, which is equal to zero. Misconceptions: - Children may use addition instead of multiplication, for example $1 \times 1=2$ and $8 \times$ $1=9$ - Children may confuse the result of multiplying by zero with multiplying by 1 - When working out a longer multiplication, for example $3 \times 4 \times 5 \times 0$, children may start working from left to right rather than realising that as they are mutiplying by zero the answer must be zero.
Divide a number by 1 and itself.	In this small step, children apply their knowledge of division and explore what happens to a number when they divide it by 1 or itself. Children can sometimes confuse the result of dividing a number by 1 with dividing a number by itself. Ensure concrete and pictorial representations are used to address this misconception, including examples that involve both structures of division. Stem sentences can be used to encourage children to see this, for example: 5 grouped into 5 s is equal to $1(5 \div 5=1)$ and 5 grouped into 1 s is equal to $5(5 \div 1=5)$. Following on from the previous small step, children may try to

| | Children may not work systematically,
 meaning that they could miss some factor
 pairs. |
| :--- | :--- | :--- |
| Children may find it difficult to understand | |
| why not all factors come in pairs, for example | |
| $4 \times 4=16$, so this only gives 1 factor of 16, | |
| not 2 | |$|$

	visualise making a number 100 times the size and understand that "100 times the size" is the same as "multiply by 100". Children use a place value chart, counters and base 10 to explore what happens to the values of the digits when multiplying by 100. Encourage children to recognise that when multiplying whole numbers by 100, the digits move two place value columns to the left and zeros are needed as placeholders in the now blank columns. As with multiplying by 10 in the previous step, it is important that they do not develop the misconception that they just add two zeros to multiply by 100, as this will cause confusion when multiplying decimals by 100
Misconceptions:	
Children may move only some of the digits	
and misplace the placeholder, for example 45	
$\times 100=4,005$	
Children may need support to recognise that	
multiplying by 100 is the same as multiplying	
by 10 and multiplying by 10 again.	

	Children may not use the correct place value, multiplying tens as ones, for example 34 $\times 6$ = $3 \times 6+4 \times 6$
Children may conflate the partitioning and	
factorising methods, for example when	
calculating 4×18, they may do $4 \times 9+4 \times 2$	

	- Children may omit the exchange or include the exchange in an incorrect place on the formal written method.	
Divide a 2-digit number by a 1-digit number X2	In this small step, children use their division facts from the Autumn term to build on their knowledge of dividing a 2-digit number by a 1-digit number from Year 3 Initially, children carry out divisions where the tens and ones are both divisible by the number being divided by without any remainders, for example $96 \div$ 3 and $84 \div 4$. They then move on to calculations where they need to exchange between tens and ones, for example $96 \div 4$. Place value counters are used to explore the sharing structure of division. Children do not need to use the formal short division method at this stage and may use informal jottings or representations such as a part-whole model to record their working instead Misconceptions: - Children may partition the 2-digit number correctly, but then divide the tens as if they are ones, for example $96 \div 3=9 \div 3+6 \div 3$ - Instead of using their times-tables knowledge, children may revert to less efficient methods such as drawing circles, then drawing dots to share between the circles. - Children may always partition into tens and ones when other forms of partitioning are more appropriate.	
Divide a 3-digit number by a 1-digit number.	In this small step, children continue to develop their understanding of division by extending from dividing 2-digit numbers in the previous two steps to dividing 3-digit numbers. Place value counters are again used to represent the calculations, so that children can make sense of exchanges that are needed to complete the division. Part-whole models are also used to show how flexible partitioning can support the process of division by looking for multiples of the number being divided by. The step starts with divisions that do not leave a remainder, before progressing to divisions with remainders. By the end of this step, children should have a good understanding of division that will support them when they move on to the formal written method in Year 5 Misconceptions: - Children may partition the 3-digit number correctly, but then divide the hundreds and tens as if they are ones, for example $846 \div 2$ $=8 \div 2+4 \div 2+6 \div 2$ - Children may divide the whole number rather than partitioning into hundreds, tens and ones and then unitising the hundreds and tens.	

| Correspondence problems. | In this small step, children consolidate their
 understanding of correspondence problems from
 Year 3, using multiplication to work out the number
 of possible combinations of sets of items. Children
 use a range of representations and contexts to
 support them. Using tables helps to encourage
 children to adopt a systematic approach to finding all
 of the possible combinations in a given context.
 Children then generalise to make the link between
 the number of possibilities for each item and using
 multiplication to find the total number of
 combinations. Once confident with finding all
 possible combinations for two sets of items children
 may begin to explore finding all possible
 combinations for three sets of items. |
| :--- | :--- | :--- |
| Misconceptions:
 $-\quad$ Children may see the same choices in a
 different order as a different choice. | |
| Children may need support to work | |
| systematically when listing all possibilities. | |
| Children may add instead of multiply the | |
| number of possibilities for each item. | |$|$

NC Objectives:

- identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally, drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1,000
- recognise and use square numbers and cube numbers, and the notation for squared $\left(^{2}\right)$ and cubed (${ }^{3}$)
- solve problems involving multiplication and division, including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates

Resources/documents:

Ready to Progress Guidance, White Rose Small steps, White Rose Calculation Policies (Use of concrete), NCETM mastery assessment docs.

Base 10, place value counters, part-whole models, bar models, real-life objects e.g. sweets etc.
Real life discussion before teaching:
Building, constructions, shopping, baking

Pre- assessment	Assessment tasks	Language Focus
Revision from previous years: recall multiplication and division facts for multiplication tables up to $12 \times$	White Rose Year 4 Multiplication and Division (Autumn Term) Assessment sheets.	Multiple, multiplication, lots of, groups of, divide, share, factors, common, prime, square
12		
use place value,		
known and		
derived facts to		
multiply and		
divide mentally,		
including:		
multiplying by 0		
and 1; dividing by		
1; multiplying		
together 3		
numbers		
recognise and		
use factor pairs		

and commutativity in mental calculations - multiply two-digit and three-digit numbers by a one-digit number using formal written layout - solve problems involving multiplying and adding, including using the distributive law to multiply twodigit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects		
Teaching sequence	Learning tasks	Language Focus
1. WALT: To identify multiples. WILF: I will use my knowledge of times tables facts to identify a range of multiples.	What is a multiple? Give examples. Look for patterns in multiples. Once children have started. Have children that are on apply task to come to board to check understanding and give input on how to answer using correct vocabulary. Problem solving and reasoning questions. GL- use numicon and base 10 to practice $2 x$ and $5 x$ tables. WALT: To recall multiplication facts. WILF: I will use manipulatives to show $2 x$ and $5 x$ multiplication facts.	Multiple, product, pattern, consecutive
2. WALT: To identify Factors. WILF: I will use my knowledge of times tables facts to identify factors and factor pairs.	What is a factor? Explain. Factors come in factor pairs. We can use this to work systematically to find factorsreminder of Alien Hunt task from previous year. Once children have started. Have children that are on apply task to come to board to check understanding and give input on how to answer using correct vocabulary.	Multiple, product, pattern, consecutive, factors, factor pairs, systematically

	Problem solving and reasoning questions. GL- as previous lesson but now introduce the word 'Factors'. Can she find the factors of $2 x$ and $5 x$ tables?	
3. WALT: To identify common factors. WILF: I will use my knowledge of times tables facts to identify common factors.	Recap of factors and factor pairs. What are common factors? Once children have started. Have children that are on apply task to come to board to check understanding and give input on how to answer using correct vocabulary. Problem solving and reasoning questions. GL- look at $2 x, 5 x$ and now 10x. Find the factors and identify common factors.	Multiple, product, pattern, consecutive, factors, factor pairs, systematically, common factors
4. WALT: To identify prime numbers. WILF: I will use my knowledge of factors to identify prime numbers.	What are prime numbers? who can give example? Once children have started. Have children that are on apply task to come to board to check understanding and give input on how to answer using correct vocabulary. Problem solving and reasoning questions. GL- practise of $2 x, 5 x$ and $10 x$. some of this time can be TT Rockstars.	Multiple, product, pattern, consecutive, factors, factor pairs, systematically, common factors, prime, composite
5. WALT: To show that a square number is a number that is multiplied by itself WILF: To use arrays to show examples of different squared numbers.	Show a square number on the board as an array. What shape does this make? Explain that this is a squared number. show the square number symbol and where it is positioned. Have children draw some examples in their books using arrays and they write the number next to it e.g. $3 \times 3=$ $3^{2}=9$. Have them do this for 3,5 and 6 squared in their books. Problem solving and reasoning questions. GL- practise of $2 x, 5 x$ and $10 x$. some of this time can be ΠT Rockstars.	Multiple, product, pattern, consecutive, factors, factor pairs, systematically, common factors, prime, composite, square numbers, arrays

NC Objectives:

- identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally, drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10,100 and 1,000
- recognise and use square numbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed (${ }^{3}$)
- solve problems involving multiplication and division, including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates

Resources/documents:

Ready to Progress Guidance, White Rose Small steps, White Rose Calculation Policies (Use of concrete), NCETM mastery assessment docs.

Base 10, place value counters, part-whole models, bar models, real-life objects e.g. sweets etc.

Real life discussion before teaching:

Building, constructions, shopping, baking

Pre- assessment	Assessment tasks	Language Focus
Revision from previous years: recall multiplication and division facts for multiplication tables up to $12 \times$	White Rose Year 4 Multiplication and Division (Spring Term) Assessment sheets.	Multiple, multiplication, lots of, groups of, divide, share,
12		
use place value,		
known and		
derived facts to		
multiply and		
divide mentally,		
including:		
multiplying by 0		
and 1; dividing by		
1; multiplying		
together 3		
numbers		
recognise and		
use factor pairs		

and commutativity in mental calculations - multiply two-digit and three-digit numbers by a one-digit number using formal written layout - solve problems involving multiplying and adding, including using the distributive law to multiply twodigit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects		
Teaching sequence	Learning tasks	Language Focus
1. WALT: To multiply a 2 or 3-digit number by a single digit. WILF: I will use a formal method (column method) to multiply a 2 or 3 digit number by a single digit.	Model how to use column method with a 2-digit number. Now do one with children explaining each step. Repeat with 3-digit number. Now put a 2 by 1 -digit number and 3 by 1-digit number on the board. Those that can complete those can continue to practice while the other children are split for further intervention. Children will roll a dice to create their numbers- LAP children will have 1-6. MAP with have 1-9 dice and HAP will have 1-12 dice to create own 3-digit by 1 -digit calculation. GL- use numicon and base 10 to practice $2 x$ and $5 x$ tables. WALT: To recall multiplication facts. WILF: I will use manipulatives to show $2 x$ and $5 x$ multiplication facts.	Multiple, multiply, column, place value
2. WALT: To multiply a 4-digit number by a single digit.	Put a 4 by 1-digit multiplication on the board. Do quick assess. Those that complete correctly can start on fluency task.	Multiple, multiply, column, place value, carry, exchange

WILF: I will use a formal method (column method) to multiply a 4-digit number by a single digit.	Those that struggled the previous day can go straight on to intervention with TA. Those that need some support with 4 by 1-digit based on fist questions. Will stay with CT for further modelling and examples before moving on to fluency. Once children have started. Have children that are on apply task to come to board to check understanding and give input on how to answer using correct vocabulary. Problem solving and reasoning questions. GL- use numicon and base 10 to practice $4 x$ tables. Help her to make links with $2 x$ tables. Look for patterns such as all even numbers in ones column. WALT: To recall multiplication facts. WILF: I will use manipulatives to show $4 x$ multiplication facts.	
3. 2 days WALT: To multiply a 2-digit number by a 2-digit. WILF: I will use a formal method (column method) to multiply a 2-digit number by 2-digit.	Day 1- Model how to use column method with a 2 by 2-digit number. Now do one with children explaining each step. Now put a 2 by 2-digit number on the board for children to solve independently. Those that can complete those can continue to practice while the other children are split for further intervention. Children will roll a dice to create their numbers- LAP children will have 1-6. MAP with have 1-9 dice and HAP will have 1-12 dice to create own 3-digit by 1-digit calculation. Day 2- Put a 2 by 2-digit multiplication on the board. Do quick assess. Those that complete correctly can start on fluency task. Those that struggled the previous day can go straight on to intervention with TA. Those that need some support with 2 by 2-digit based on first questions. Will stay with CT for further modelling and examples before moving on to fluency.	Multiple, multiply, column, place value, carry, exchange

	Once children have started. Have children that are on apply task to come to board to check understanding and give input on how to answer using correct vocabulary. Problem solving and reasoning questions. GL- use numicon and base 10 to practice 4 x tables. Help her to make links with $2 x$ tables. Look for patterns such as all even numbers in ones column. WALT: To recall multiplication facts. WILF: I will use manipulatives to show $4 \times$ multiplication facts.	
4. WALT: To multiply a 3-digit number by a 2-digit. WILF: I will use a formal method (column method) to multiply a 3-digit number by 2-digit.	As day 2 above but with 3 by 2-digit number GL- As previous lesson	Multiple, multiply, column, place value, carry, exchange
5. WALT: To multiply a 4-digit number by a 2-digit. WILF: I will use a formal method (column method) to multiply a 4-digit number by 2-digit.	As day 2 above but with 4 by 2-digit number Word Problems 1. There are 35 rows of 24 dominoes. How many dominoes are there altogether? 2. There are 15 biscuits in a packet. A shop orders 156 packets. How many biscuits will be in the 156 packets? 3. It takes 18 minutes to make a toy car. How many minutes will it take to make 205 cars? 4. 614 people are sorted into teams of 18 for a competition. How many teams are there? 5. It is 8521 miles between Alaska and Death Valley. The coach drivers between the 2 12 times over the summer. How many miles will it have travelled? 6. A rugby club has an average attendance of 6962 people to each match. What is the total attendance for the 39 matches played in a season?	Multiple, multiply, column, place value, carry, exchange

	7. A cinema chain has 28 cinemas. The average weekly attendance is 9828 people. What is the total attendance across the whole chain? GL- WALT: To multiply a 2-digit number by a single digit. WILF: I will use a formal method (column method) to multiply a 2-digit number by a single digit. Complete task from lesson 1 from whole class learning- only do this if the last 2 lessons are secure.	
6. WALT: To divide a 2digit by a 1-digit number. WILF: I will use different representations to divide and share 2digit by 1-digit number.	Model different ways a representing division number sentences. E.g. bar model, part-whole, groups etc. Problem solving and reasoning questions. GL- using manipulatives to divide by 2 and 5. WALT: To divide by 2 and 5 . WILF: I will use grouping to divide by 2 and 5.	Division, divide, share, group
7. division- inverse 2 by 1 WALT: To identify division facts. WILF: I will use inverse operation and knowledge of multiplication facts to identify relating division facts.	Model how multiplication facts can be used to find relating division facts. Explain and model how this can also be used to check answer. Children practice this skill- give some multiplication facts for the children to write as division fact. Then give some division facts for them to check using inverse if they are correct or not and explain what is wrong and why. GL- As previous lesson	Division, divide, share, group, inverse, relating facts, check
8. 2 days WALT: To divide a 3digit by a 1-digit number. WILF: I will use formal written method (bus stop) to divide 3-digit by 1digit number.	Day 1- Model bus stop a few times. Show how they can work out each step e.g. write multiplication down the side, dots for counting in groups etc. Now model with the children's input on what to do next and why. Then give one or 2 for them to complete independently. Those that understand can continue to practise using dice. Day 2- Put a division some on the board as quick assessment. Those that complete correctly can start on fluency task.	Division, divide, share, group, inverse, relating facts, check, formal method, bust stop

	Those that struggled the previous day can go straight on to intervention with TA. Those that need some support with 3 by 1-digit based on first questions. Will stay with CT for further modelling and examples before moving on to fluency. Once children have started. Have children that are on apply task to come to board to check understanding and give input on how to answer using correct vocabulary. Problem solving and reasoning questions. GL- using manipulatives to divide by 3 and 4. WALT: To divide by 3 and 4 . WILF: I will use grouping to divide by 3 and 4.	
9. WALT: To divide a 4digit by a 1 -digit number. WILF: I will use formal written method (bus stop) to divide 4-digit by 1 digit number.	As day 2 above but with 4 by 2-digit number GL- As previous lesson	Division, divide, share, group, inverse, relating facts, check, formal method, bust stop
10. WALT: To divide using remainders. WILF: I will use formal written method (bus stop) to divide with remainders	Model bust stop with remainders. Use grouping to show how to find remainders Problem solving and reasoning questions. Word Problems GL- As previous lesson	Division, divide, share, group, inverse, relating facts, check, formal method, bust stop, remainders

NC Objectives:

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the
- formal written method of long multiplication
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers use their knowledge of the order of operations to carry out calculations involving the
- four operations
- Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- Use written division methods in cases where the answer has up to two decimal places
- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- identify the value of each digit in numbers given to three decimal places and multiply
- and divide numbers by 10,100 and 1000 giving answers up to three decimal places
- multiply one-digit numbers with up to two decimal places by whole numbers
- use written division methods in cases where the answer has up to two decimal
- places
- solve problems which require answers to be rounded to specified degrees of
- accuracy
- Solve problems involving addition, subtraction, multiplication and division

Resources/documents: Ready to Progress Guidance, White Rose Small steps, White Rose Calculation Policies (Use of concrete), NCETM mastery assessment docs, past SATs questions.

Base 10. Place value counters.
Real life discussion before/during teaching : Where do we use multiplication and division in real life:
EG: Sharing out sweets,objects, money etc; at a restaurant sharing the bill.

Pre- assessment	Assessment tasks	Language Focus
Revision from previous years:		
Dividing and multiplying by multiples of 10	Short assessment task	Multiply Product
Column method multiplication 3×1 digit and 3 $\times 2$ digit	Short assessment task	Divisor Dividend Quotient Share
Short division of 2 and 3 digit numbers with and without regrouping and exchange.	Short division (bus stop method) of 2 and 3 digit numbers using place value counters/base 10 .	Divide Divided by Inverse of multiplication
Teaching sequence	Learning tasks	Language Focus
WALT: Multiply by multiples of 10	Check that children know what is meant by a multiple of 10 and that $100 \mathrm{~s}, 1000 \mathrm{~s}, 10,000 \mathrm{~s}, 100$, 000 s and $1,000,000$ are all multiples of 10 . Use a place value chart to demonstrate what happens to the digits when we multiply by 10 by	

	allowing the children to see the pattern -start easy such as 32×10 so they know the answer. Move to using the same rule for x 100, 1000, etc. ensure they use their place value chart and move the digits correctly. Move onto multiplying by other multiples of 10 EG $34 \times 200=34 \times 2$ then $\times 100$ OR 34×100 and then x 2. Ask them to complete some others on whiteboards. Then practise: Set A: $\begin{aligned} & 5.6 \times 100= \\ & 0.54 \times=54 \\ & \times 1000=3570 \\ & 5.5 \times 2000= \\ & 9.25 \times 300= \\ & 6.2 \times 50= \end{aligned}$ Set B EG $0.45 \times 60=$ $5.2 \times 500=$ $45.1 \times 10,000=$ $7.65 \times 20,000=$ $8.75 \times 50,000=$ $9.2 \times 100,000=$ $98.5 \times 400,000=$ Apply GD	
WALT: divide by multiples of 10	Input as above but perform the inverse of place value chart.	

	Practise similar to input Apply SATs questions: GD GD 1 A rectangular leisure centre has a length of $42 m$ and a width of $33 m$. The centre's swimming pool is 25 metres long and 12 metres wide. a. How much area of the leisure centre is used for other facilities other than swimming? b.Jay swims 234 lengths per week. How many metres does he swim in a week? c.It takes him approximately 83 seconds to swim one length. How many seconds does he swim each week? GD 2 Rhona says that when her new baby sister is 3 days old she will have been alive for 240,000 seconds. Is she correct? Explain your answer fully using APE.	
WALT: Multiply decimals using the column method.	Teach how to use the column method to solve multiplication of decimals and 1 and 2 digit numbers EG: $\begin{aligned} & 12.8 \times 9= \\ & 45.6 \times 8= \\ & 16.8 \times 21= \\ & 33.64 \times 45= \end{aligned}$ Practise - examples like above Apply:	

	Ally and Jack buy some stickers. GD You need to travel from point A to point B. You can only travel through each point once. What's the largest product you can make from A to B ? What's the smallest product you can make from A to B ?	
Concrete, pictoral and abstract. WALT: Use the short division method accurately.	Teach division when regrouping is needed using place value counters. When secure, use pictoral representations of place value counters, then abstract. Lots of practical in this session. Daily intervention to gap fill.	Divisor Dividend Quotient Share Divide Divided by Inverse of multiplication Regroup/exchange
2: WALT: Use the short division method to divide decimals by integers.	Teach division of decimals by integers when regrouping is needed using place value counters. And no remainders When secure, use pictoral representations of place value counters, then abstract. Problem-solving and reasoning - SATS questions involving money- various difficulties. Lots of practical in this session. Daily intervention to gap fill.	Divisor Dividend Quotient Share Divide Divided by Inverse of multiplication Decimals integers
3: WALT: Use the short division method to divide integers by	Teach division by integers when regrouping is needed using place value counters and interpret remainders.	Divisor Dividend

integers that leave remainders.	When secure, use pictoral representations of place value counters, then abstract. Problem-solving and reasoning - problem-solving word problems where the answers need to be rounded up or down. Real life scenarios. Lots of practical in this session. Daily intervention to gap fill.	Quotient Share Divide Divided by Inverse of multiplication Integers remainder
4: WALT: Use the short division method to divide integers by integers, interpreting remainders as decimals.	Teach how to create a decimal from an integer remainder by adding the decimal point and place holders. Problem-solving and reasoning - word problems, SATs questions. Differentiation when ready -problem-solving and reasoning.	Divisor Dividend Quotient Share Divide Divided by Inverse of multiplication Integers remainder
5. WALT: Use long division.	Teach long division.	Divisor Dividend Quotient Share Divide Divided by Inverse of multiplication Integers remainder
Assessment	Challenge lesson Give different division questions similar to throughout the learning journey and give points different amount of points for each correct answer Work in teams to reach a target score. Give prizes. Children independently use resources if they need to. These should be available for children to access independently. Any misconceptions and gaps must be picked up at this point and intervention given.	Sentence stems.
6 Making connections: WALT: Use knowledge of multiplication and division to	Teach missing number calculations knowing when to use or not use inverse operations. Teach matching worded problems to division and multiplication calculations.	Divisor Dividend Quotient Share Divide

solve missing number problems.	Children can still use equipment to solve these. Daily intervention. Differentiation when ready -problem-solving and reasoning	Divided by Inverse of multiplication Integers Remainder Inverse
7. WALT: Solve missing number worded problems by working backwards and performing the inverse. Working backwards SATs style questions.	SATS style questions	
8. WALT: Solve problems by using a given formula.	SATs style questions	
9: Fluency/ Application: WALT: Solve multi-step problems. Calculations and worded problems linked to topic	Worded problems of increasing difficulty related to topic Teach how to solve worded problems by modelling using pictures to work out answers and use of graphic organiser. These may involve other operations as well as division. Encourage children to take responsibility for their own learning by using the resources they need and drawing pictures, models to help them Daily intervention.	Divisor Dividend Quotient Share Divide Divided by Inverse of multiplication Integers Remainder inverse Modelled APE answers.
WALT: Find common multiples	Recap on what a multiple is. Give two numbers to find the multiples of and then ask children to find the common multiples. What is the LCM (lowest common multiple)? Practise same as in input - Apply - give various sorting diagrams (venn, carroll) children to sort according to multiples. GD - more complex sorting diagrams	
WALT: Find squares and cubes	Recap on square numbers. Teach children to find squares of 2 digit numbers by using the column method. Teach how to calculate cubed numbers by using the column method but ensuring they know that	

	EG 12 cubed $=12 \times 12 \times 12$ so $12 \times 12=144 \times 12=$ 1728.			
WALT: Find common factors	Recap on factors then give two numbers and children find the factors then common factors. Teach HCF - highest common factor-children to identify.			
Give a range of sorting diagrams for children to identify common factors then move to worded problems for GD.	Recap on factors numbers	Give some factors of numbers to find ensure that some are prime.		
Ask if there are any that have only 2 factors - 1 and				
itself. These are prime numbers.				
Children to identify prime numbers from given list				
and solve simple problems involving knowledge of				
prime numbers.			\quad	Tach how to solve mixed calculation problems
:---				
using BODMAS correctly	\quad	WALT: Use BODMAS to solve		
:---				
calculations involving mixed				
operations.				

